Assessment of Indian Hydrogen Ecosystem Well to Wheel Approach

Sachin Chugh, DGM (Alternative Energy), IndianOil R&D

ICGH-2023, New Delhi

Rolling the Pitch

Production pathways

India specific Well to Wheel Energy & Emissions needed for quantification of benefits – GREET Model Used

Energy production from various primary sources

Distinguished process parameters considered for India specific study

SI. No.	Source of Energy	Distinguished Features for Indian conditions	Energy Production (Primary Energy Sources)	Energy Transportation (Primary & Secondary)	Energy Conversion / Utilization
		% import, size of refinery, complexity of refinery, fuel slate,			
1	Crude Oil	hydrogen consumption for quality upgradation of liquid fuels, transportation inefficiencies etc.	Coal	Road (Trucks)	IC Engines
2	Natural Gas	% import, losses in re-gasification/extraction, pipeline transport losses	Crude Oil	Rail	Batteries
3	Electricity	% share of fossil fuels is the grid capacity, power generation efficiency, transmission & distribution losses, Plant load factor/capacity utilization factor of solar energy etc.	Natural Gas	Pipelines	(Motors)
4	Methanol	Quality of coal/ ash content, calorific value, fuel economy of transportation system etc.	Biomass	Grid Transmission	(Motors)
5	Biomass	Type of biomass availability, segregation efficiency, conversion technology etc.	Solar	Ocean tankers	
6	Solar	DNI of solar energy/ Conversion & transmission losses etc			

Raw material Assessment

Energy Analysis

Analysis of CO2e Emissions

Tank to Wheel Energy Comparison

GVW of the bus: 15.5 T

Diesel: Well to Wheel Analysis

R&D Electricity for Battery Electric Vehicles

WTW Analysis: CO2 equivalent emissions- 1865 g/km Total Energy Consumed – 21.2 MJ/KWh (21.9 MJ/Km)

H2 from SMR

H2 from Biomass gasification

Solar PV based H2

GHG emissions: Well to Wheel

Energy Consumption: Well to Wheel

Comparison with Grid and Diesel:

SMR : 21% and almost same **Solar based Hydrogen**: 34% and 15% less Oxy-steam biomass gasification WTT:10.2 MJ/km T TW: 8.4 MJ/km; Total 18.6 MJ/km

GHG emissions: FC vs ICE

Energy consumption: FC vs ICE

