An Atmanirbhar and sustainable approach for Green hydrogen production using biomass

Biomass as a source of energy transition

S Dasappa Indian Institute of Science Bangalore

Content

- Biomass and thermo-chemical process
- Details about bio-hydrogen process
- Why biomass and India's Potential of hydrogen from biomass
- Opportunities and Challenges
 - SWOT analysis
- Opportunity for sustainable hydrogen

Composition of biomass

	Mass fraction
Element	(%)
Carbon	52.02
Nitrogen	0.12
Sulphur	0.42
Hydrogen	(6.55)
Oxygen	41.43
Chemical	
Composition	$CH_{1.4}O_{0.6}$
Molecular weight	27.89 kg kmol ⁻¹

250g of H2/kg of methane ~65 g of H2/kg of Biomass

~110 g of H2/kg of water

Gasification to hydrogen conversion

- Biomass to mixture of gas and separating hydrogen
- $C_{1.0} 0.7(H_2O) + 0.2 O_2 + H_2O$ 1.7 H_2 + CO_2
 - Theoretical limit \longrightarrow 150 g of H₂/kg of biomass
- Air gasification
 - $-C_{1.0} 0.7(H_2O) + O_2 + 3.76 N_2 \longrightarrow 0.2 H_2 + 0.2 CO + 0.02 CH_4 + 0.12CO_2 + 0.46 N_2$
 - Here about 40 45 g of hydrogen per kg of biomass
- Oxy-steam
 - $-C_{1.0} 0.7(H_2O) + x O_2 + y H_2O$ \longrightarrow $0.25 0.50 H_2 + 0.12 0.25 CO + 0.04 0.05CH_4 + 0.15 0.25CO_2$
 - Up to 100 g of hydrogen per kg of biomass

Scientific aspects of the technology

Current scheme

5 kg/hr hydrogen generation facility at IISc

The 5 kgph hydrogen oxy-steam gasification system

VPSA system for multi component mixture separation

Oxy-steam gasification results

CO-ExpCO2-expCH4-ExpH2-Exp

CBR	0.75	1	1.4	1.5	1.8	2.4	2.7
ER	0.21	0.18	0.21	0.23	0.27	0.28	0.3
H ₂ yield (g kg ⁻¹ of biomass)	66	68	71	73	94	99	104
H ₂ yield (volume fraction, %) on dry basis	41.8	45.2	43.1	45.2	49.6	51.6	50.5
CO yield (volume fraction, %) on dry basis	27.6	24.9	26.5	24.9	17	12.4	13
H₂/CO	1.5	1.8	1.6	1.8	2.9	3.8	3.9
LHV (MJ Nm ⁻³)	8.9	8.6	8.8	8.7	8	7.4	7.4
					V		

Common de la comi	Maximum	Bio hydrogen
Compounds (assay)	concentration	quality
Hydrogen (minimum) %	99.97	✓
Water (H2O)	5 ppm	✓
Total HC except methane	2 ppm	✓
Methane (CH4)	100 ppm	✓
Oxygen (O2)	5 ppm	✓
Helium (He)	300 ppm	✓
Nitrogen (N2)	300 ppm	✓
Argon (Ar)	300 ppm	\checkmark
Carbon dioxide (CO2)	2 ppm	✓
Carbon monoxide (CO)	0.2 ppm	✓
Total sulphur compounds	0.004 ppm	✓
Formaldehyde (HCHO)	0.2 ppm	✓
Formic acid (HCOOH)	0.2 ppm	✓
Ammonia (NH3)	0.1 ppm	✓
Halogenated Compounds	0.05 ppm	✓
Particulate	1 mg/kg	✓

Discrete current step investigation – Establishing the polarization curve

UHP Hydrogen

Parameter	Quantity		
Hydrogen flow rate	150 mLPM		
Oxygen flow rate	300 mLPM		
Test point time	300 seconds each		

BIO Hydrogen

Biomass to hydrogen and chemicals

Biomass as a potential source - India

State	Area (kHa)	Crop production (kTon/year)	Biomass generation (kTon/year)	Surplus biomass (kTons/year)	Power Potential (MWe)
Total (including other states)	107760.7	347893.5	511040.9	145105.7	18729.9
Forest and waste lands	60000		155473.9	104048.1	14561.5

- ➤ 250 million tons of surplus biomass (~70 million tons of oil equivalent) from agro residues and forest and wasteland
- > At 10 % utilization ~ 1.25 million tons of Green hydrogen
- Mitigates emissions

Observations from the SIGHT document

- Approved Initiatives for biomass
 - Protected 40,000 Metric Ton / Annum ~ 5 Ton per Hour is dedicated for Biomass based Hydrogen generation technology
 - Can participate in the agnostic pool also
 - Production linked incentive for 3 years
- Request
 - Create a Framework for CAPEX Incentive scheme for biomass
 - Agro residue utilisation based enhanced PLI support
 - Support emission reduction

Why Biomass?

India being an agro-based economy - need to handle the residues.

Impact

Technical

- Biomass is a CO2 neutral technology can be carbon negative
- Continuous operation ~7500 to 8000 hrs/year
- Supports distributed generation
- Indigenous technologies are available supports GoI initiatives
- Provides Energy security to the country
- Supports country's climate change commitments
- Possibility to show globally biomass to hydrogen a reality

Social

- Supports farmers
- Ensure employment
- Business opportunities
- Supports distributed generation

Opportunities and Challenges for bio-hydrogen

Opportunities

- Technology has been developed and tested at reasonable scale
 - 10 kg/hr plant will be operational in IOCL R and D campus for fuel cell bus
 - Range of applications Refinery, Ammonia, Methanol. SAF, etc
- Limited co-ordinated efforts towards Biomass energy for large scale impact
- Biomass to value added fuels can partially replace CH₄ based fuel derivatives
- Supports usage of MSW

Challenges

- Fuel Supply chain
 - MSP for residues
 - Fuel preparation and supply chain mechanism
 - Incentivizing based on Production Linked Incentive for biomass to hydrogen
 - GST related issues

SWOT analysis from biomass to hydrogen

Strengths

Decentralized; Strengthens self-reliance, Environmentally sound; Value addition to the agro-residues

Locally available fuel, ability to meet the fossil fuel applications/replacement

- Indigenous technology
 - Directly from biomass to hydrogen
- Employment potential

Opportunities

- > ATMA Nirbar
- Potential very high
- Distributed concept
- Gestation period nearly zero;
- Hydrogen generation costs are comparable to that of fossil fuel system;
- > Supports Gol's initiative on Green NH3 and Urea
- ➤ Being biogenic the process allows for —ve carbon footprint

Weakness

- No level playing field
- Fuel dispersed;
- Not many players in the sector
- Low visibility
- Completely indigenous technology

Threats

- Reforms under-emphasize biomass-based systems;
- No access towards level playing field,

Need for Centre of Excellence - Biomass to hydrogen

- Biomass is a complex fuel and is available in various forms
 - Processes and technologies for converting biomass to energy (commercial)
- Biomass sector has no co-ordinated efforts
 - A very important resource as India is agro-based economy
- For the mission mode approach, Biomass to Green hydrogen is a line item that requires several players to join hands to meet the overall objectives
 - Limited opportunities for importing technology for our country with the range of fuels, especially MSW (an important portfolio with limited focus at present)
 - Atmanirbhar
- Backend support to the Mission program at MNRE on Biomass

Opportunity for sustainable hydrogen

..... Thank you

dasappa@iisc.ac.in

