

Japan's Perspective on the Hydrogen Economy

July 2023 Eiji Ohira New Energy and Industrial Technology Development Organization (NEDO)

Japan's Outlook

Background: Japan's Energy Situation

Primary Energy Supply in 2021 (18,575 PJ)

Energy related CO₂ Emission in 2020 (976 million tons)

General Energy Statistics (Agency for Natural Resources and Energy, METI)

Japan's National Greenhouse Gas Emissions in Fiscal Year 2020(MOE)

Towards 2050 Carbon Neutrality

Japan's policy on Hydrogen

- "Basic Hydrogen Strategy" (former Prime Minister Abe's Initiative)
 - ✓ World's first national strategy launched in Dec. 2017
 - ✓ 2050 Vision: position H₂ as a new energy option (following Renewables)
 - ✓ Target: make H₂ affordable (\$3/kg by 2030 \Rightarrow \$2/kg by 2050)

Japan's Policy Update

•Revision of Basic Hydrogen Strategy (6 June 2023)

- ✓ Setting new targets
 - H₂ introduction: 12million tons (2040)/ Electrolysis: 15GW(2030, worldwide)
- ✓ Promoting transition to "low-carbon hydrogen"
 - Definition of low-carbon hydrogen: below 3.4kg-CO₂e/kg-H₂
- ✓ Strengthening industrial competitiveness
 - JPY 15 trillion Public-Private investment for H_2 supply chain next 15 years (incl. contracts for difference (CfD)-style subsidy scheme)
 - Prioritizing nine strategic areas

(Electrolysis, Hydrogen Supply Chain, Fuel Cells, Power Generation, etc.)

Direction: How to promote Hydrogen

	Goals Cost (\$/kg): \$3/kg by 2030 & less than \$2/kg by 2050			2/kg by 2050
		Short Term (- 2025) Approx. 2 million tons	Mid Term (- 2030) Max_3 million tons	Long Term (- 2050) 20 million tons
Demand Supply	Existing source (ex. By products)	Maximize utilization as major source	Decarbonization of hydrogen product	ion (with CCUS)
	Import	Accumulation of knowledge and cost reduction through demonstration project	Development of large-scale international hydrogen supply chain	Further scale up through diversification of hydrogen source
	New domestic source	Accumulation of knowledge and cost reduction through demonstration project	Start up hydrogen production by electrolysis using excess energy from renewables	Scale up hydrogen production by electrolysis, and realizing innovative hydrogen production technology
	Transportation	Expansion to FC trucks in addition to FCVs and FC buses	Launch of ships (FC ships, etc.) to the market	Use of hydrogen and synthetic fuel for aviation
	Power generation	Using of stationary fuel cell and small gas turbine for distributed energy	Commercialization of large-scale hydrogen power generation turbine	Further scale up and function as balancing power
	Industry (raw material)	Conducting technology demonstrat chemical process, etc.)	on project (refinery, steel process,	Realizing hydrogen steel process, green chemical, etc.
	Thermal (Industry, business, household)	Substitute fossil fuels through insta decarbonization of supply infrastruc gas pipes	lation of fuel cell and ture using electrolysis and existing	Expanding supply through infrastructure development and hydrogen cost reduction Source: METI

Current status

Items	Japan's Target (in 2030)	Current status (as of Feb. 2023)
Stationary Fuel Cell		
Regidential Fuel Cell (EneFarm)	3 million	480,373 (Mar. 2023)
Mobility		
Passenger Vehicles	800,000	7,692
Fuel Cell Buses	1,200	132
Forklift	N/A	397
Hydrogen Refueling Station		
Public Stations	1,000	167(Mar. 2023)

NEDO's R&DD on Hydrogen

STATUTE DESCRIPTION OF TAXABLE

A DESIGN AND A DES

THE OWNER WATCHING

-

- 101

KVO BRT

Wall H allan

THE THE PARTY OF THE PARTY

THE R. L.

Comprehensive approach

Fundamental / Applied Research

Field test / Demonstration

Regulation, code and standard / Certification

Step by Step approach

Hydrogen in Energy System Step 3: Widely use of H₂

FCV & HRS

Step 2: Direct use of H₂ as energy source (Marketization in 2014)

VE.FARM

Residential Fuel Cell

Step 1: Bring Fuel Cell Application into the Market (Marketization in 2009)

出典) 岩谷産業

Current Topic: Various Fuel Cell Application development (NEDO

Current Topic: Refueling test facility for HDV

Current Topic: Hydrogen Technical Center

Demonstration at "Real Environment

- Testing a new equipment
- Refueling protocol
- Metering etc.
- Total System Analysis for cost reduction Education & Training

Current Topic: Hydrogen Gas Turbine

1MW Hydrogen/Natural Gas dual fuel gas turbine system developed by KHI

Current Topic: Hydrogen Gas Turbine

Hydrogen Combustor for hundred MW class Gas Turbine developed by MHI

Current Topic: Liquefied Hydrogen

Current Topic: MW scale Electrolysis

Current Topic: MW scale Electrolysis

Current topic: Hydrogen@Port

Current topic: Industry decarbonization

Radiator manufacturing

at DENSO Fukushima factory

https://www.denso.com/global/en/news/newsroom/2023/20230309-g01/ https://global.toyota/en/newsroom/corporate/38917359.html https://www.denso.com/jp/ja/driven-base/project/fukushima_factory/

Conclusion

Hydrogen is key technology for carbon neutral
- Japan has been strongly promoting hydrogen

- >Just started market penetration
 - need to enhance application, improve technology

Our goal: Developing low-carbon energy system
- scaling-up / integration with other energy system

Thank you!