

MINISTRY OF NEW

AND RENEWABLE ENERGY

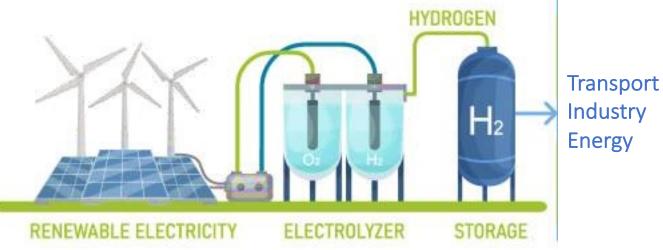


MINISTRY OF PETROLEUM AND NATURAL GAS GOVERNMENT OF INDIA OFFICE OF THE PRINCIPAL SCIENTIFIC ADVISER TO THE GOVERNMENT OF INDIA



# **Electrolyser Technologies: Challenges and Opportunities**

### Theme: Hydrogen Production – Electrolysis & Biopathways


# Prof. Kaliaperumal Selvaraj National Chemical Laboratory HYDR(@)GEN 2023 Council of Scientific and Industrial Research Ministry of Science and Technology 05<sup>th</sup> - 07<sup>th</sup> July 2023, Vigyan Bhawan, New Delhi

### **Prelude: Outline & Scenario**

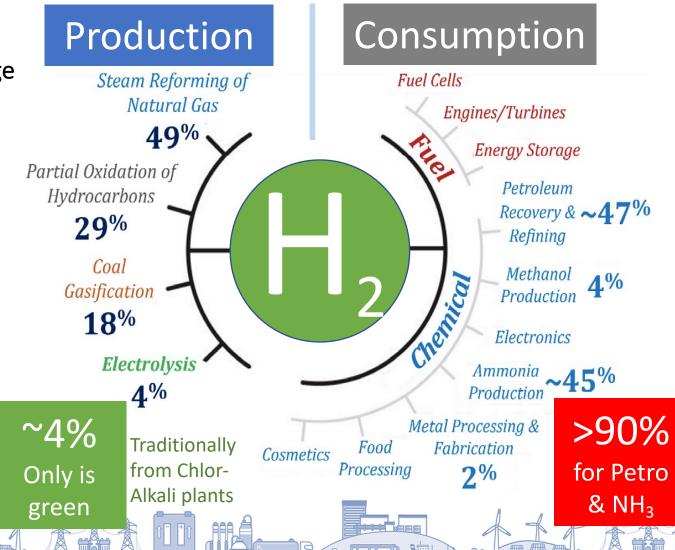


#2

Hydrogen Economy Energy Transition Affordable Green Hydrogen World, India & CSIR

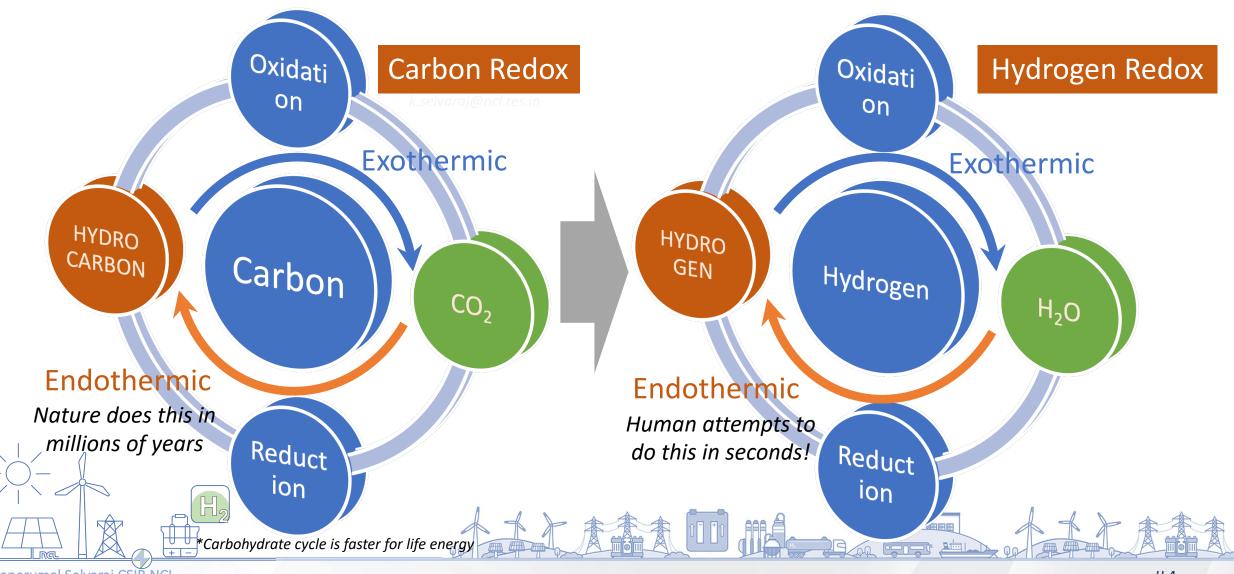


- Hydrogen generation pathways
- Electrolysis & Green H<sub>2</sub> generation
- Electrolyser Technologies: state of the art
- AEM Electrolyser technology: a case study
- Challenges and Opportunities
  - o @ core level
  - o @ system level
- Testing & Infrastructures
- Summary and Future


## 'Implementable Hydrogen Economy': The verticals



- Phase-out fossil fuels & Mitigate climate change
- o Low-carbon economy
- Use hydrogen to decarbonize the hard-toelectrify sectors. eg., Steel, Cement, Transport
- Develop low cost H<sub>2</sub> technologies


(Electrolysers, Storage, Fuel cells etc.)

- $\circ~$  Less polluting H\_2 generation: CH\_4 pyrolysis or SMR with CCS
- Push earlier energy transition



### **Energy Transition: Simplified**





### **Hydrogen: Sustainable Generation and Projections**



2050

AEM

> 70

< 45

< 100

< 200 < 300

IRENA 2020

SOEC

> 20

< 40

80

< 200

| H <sub>2</sub> | Generation      | Source                     | Products                                           | Cost \$/kg               | Emission co <sub>2</sub>              |                                                                                               |              | L            | evel       | -play   |
|----------------|-----------------|----------------------------|----------------------------------------------------|--------------------------|---------------------------------------|-----------------------------------------------------------------------------------------------|--------------|--------------|------------|---------|
| Brown          | Gasification    | Brown Coal<br>(Lignite)    | H <sub>2</sub> +CO <sub>2</sub>                    | 1.2 – 2.1                | High                                  |                                                                                               | Alkaline     | <b>20</b>    | <b>)20</b> | SOEC    |
| Black          | Gasification    | Black Coal<br>(Bituminous) | H <sub>2</sub> +CO <sub>2</sub>                    | 1.2 – 2.1                | High                                  | Cell pressure [bara]                                                                          | < 30         | < 70         | < 35       | < 10    |
| Grey           | Reforming       | Natural Gas                | H <sub>2</sub> +CO <sub>2</sub><br>released        | 1.0 – 2.1                | Med                                   | Efficiency (system)<br>[kWh/KgH <sub>2</sub> ]                                                | 50-78        | 50-83        | 57-69      | 45-55   |
| Blue           | Reform + CC     | Natural Gas                | H <sub>2</sub> +CO <sub>2</sub><br>85-95% captured | 1.5 – 2.9                | Low                                   | Lifetime [thousand hours]                                                                     | 60           | 50-80        | > 5        | < 20    |
| Green          | Electrolysis    | Water                      |                                                    | 3.5 – 5.8<br>INE (AWE) - |                                       | Capital costs<br>estimate for large<br>stacks (stack-only, ><br>1 MW) [USD/kW <sub>el</sub> ] | 270          | 400          | -          | > 2 000 |
|                | WE technologies | es Electrolysi             |                                                    | /                        | - H <sup>+</sup><br>- OH <sup>-</sup> | Capital cost range<br>estimate for the<br>entire system, >10<br>MW [USD/kW <sub>el</sub> ]    | 500-<br>1000 | 700-<br>1400 |            | -       |
|                |                 | 12                         | SOE (S                                             | OEWE) -                  | - 0 <sup>2-</sup>                     |                                                                                               |              |              |            | 2 22    |

### y future

Alkaline

> 70

< 45

100

< 100

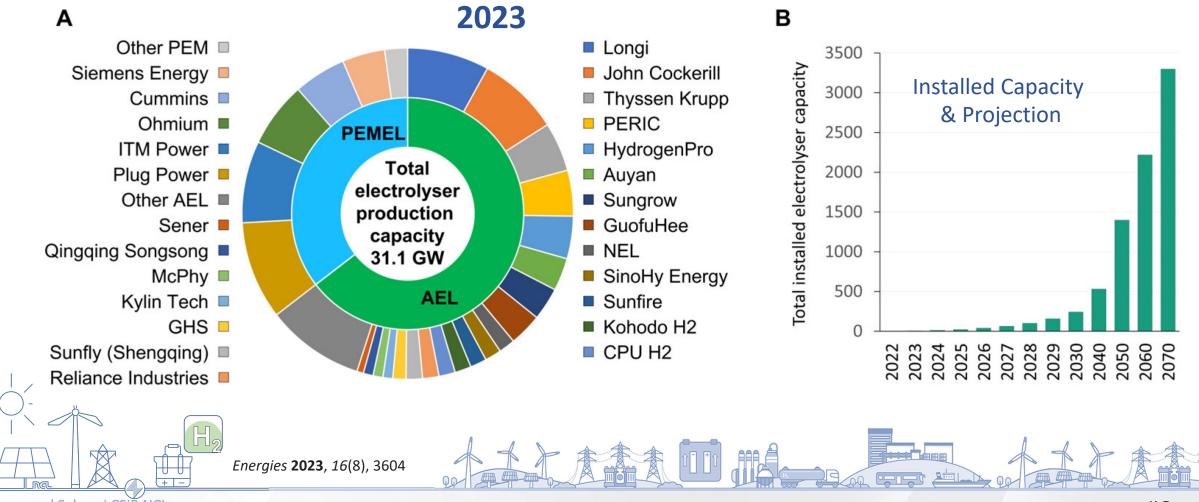
< 200

PEM

> 70

< 45

< 100

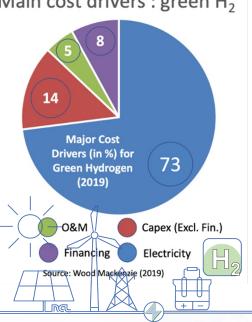

< 200

100-120 100

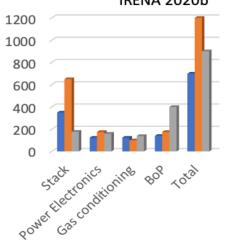
### **Hydrogen Production: Typical Global Scene**



Current electrolyser production capacity by type and manufacturers



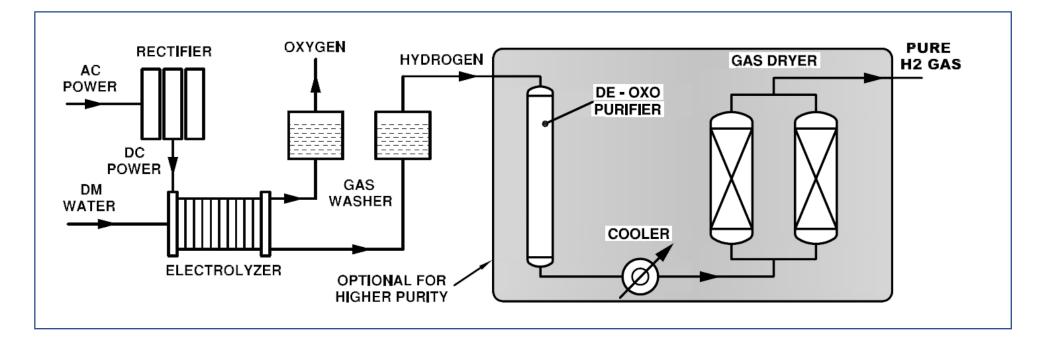

#6


## **Electrolyser Technologies: State of the art**



| LT Electrolysis   | Alkaline                     | PEM                     | AEM                           |  |
|-------------------|------------------------------|-------------------------|-------------------------------|--|
| Electrolyte       | Аq. КОН ( <mark>40%</mark> ) | PEM (Nafion) + (Acidic) | AEM + <b>dil.KOH (&lt;6%)</b> |  |
| Cathode           | Ni, Ni-Mo alloys             | Pt,Pt-Pd                | Non-precious metals           |  |
| Anode             | Ni, Ni-Co alloys             | RuO2, IrO2              | Non-precious metals           |  |
| Separator         | Diaphram (ZP 500µm)          | Nafion 117 (<100µm)     | AEM (<50μm)                   |  |
| Cell voltage      | 1.8 - 2.4 V                  | 1.8 - 2.2 V             | 1.8 - 2.2 V                   |  |
| Current density   | 0.2 – 0.4 A/cm2              | 0.6 – 2.0 A/cm2         | 0.2 - 1.2 A/cm2               |  |
| Gas purity (vol%) | >99.5                        | >99.999                 | >99.99                        |  |
| Pressure (bar)    | 1-30                         | 30-75                   | 1-40                          |  |

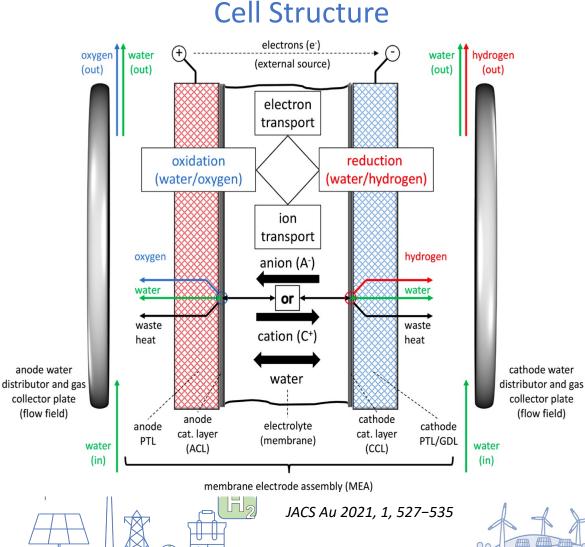


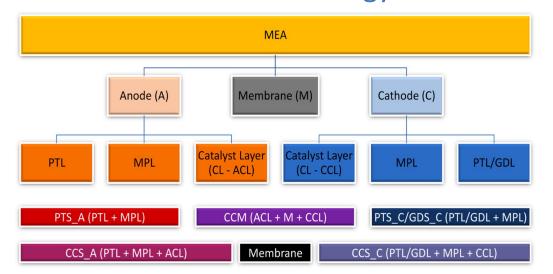

Main cost drivers : green H<sub>2</sub> Rough Cost USD@ 1MW IRENA 2020b



■ Alkaline ■ PEM ■ AEM

|                                         | CSIR's planned activity                |                          |                                  |  |  |
|-----------------------------------------|----------------------------------------|--------------------------|----------------------------------|--|--|
|                                         | Collaborating with Industrial partners |                          |                                  |  |  |
|                                         | he-art and future KPIs fo              | r all electrolyser techn | ologies.                         |  |  |
| International Renewable Energy Agency   | 2020                                   | Target 2050              | R&D focus                        |  |  |
|                                         | AEM electrolysers                      |                          |                                  |  |  |
| Nominal current density                 | 0.2-2 A/cm <sup>2</sup>                | > 2 A/cm2                | Membrane, reconversion catalysts |  |  |
| Voltage range (limits)                  | 1.4-2.0 V                              | < 2 V                    | Catalyst                         |  |  |
| Operating temperature                   | 40-60°C                                | 80°C                     | Effect on durability             |  |  |
| Cell pressure                           | < 35 bar                               | > 70 bar                 | Membrane                         |  |  |
| Load range                              | 5%-100%                                | 5%-200%                  | Membrane                         |  |  |
| H <sub>2</sub> purity                   | 99.9%-99.999%                          | > 99.9999%               | Membrane                         |  |  |
| Voltage efficiency (LHV)                | 52%-67%                                | > 75%                    | Catalysts                        |  |  |
| Electrical efficiency (stack)           | 51.5-66 kWh/Kg H <sub>2</sub>          | < 42 kWh/Kg $H_2$        | Catalysts/membrane               |  |  |
| Electrical efficiency (system)          | 57-69 kWh/Kg H <sub>2</sub>            | < 45 kWh/Kg $H_2$        | Balance of plant                 |  |  |
| Lifetime (stack)                        | > 5 000 hours                          | 100 000 hours            | Membrane, electrodes             |  |  |
| Stack unit size                         | 2.5 kW                                 | 2 MW                     | MEA                              |  |  |
| Electrode area                          | < 300 cm <sup>2</sup>                  | 1 000 cm <sup>2</sup>    | MEA                              |  |  |
| Cold start (to nominal load)            | < 20 minutes                           | < 5 minutes              | Insulation (design)              |  |  |
| Capital costs (stack)<br>minimum 1 MW   | Unknown                                | < USD 100/kW             | MEA                              |  |  |
| Capital costs (system)<br>minimum 10 MW | Unknown                                | < USD 200/kW             | Rectifier                        |  |  |


### **Cost: System Technology – Integration & Engineering**

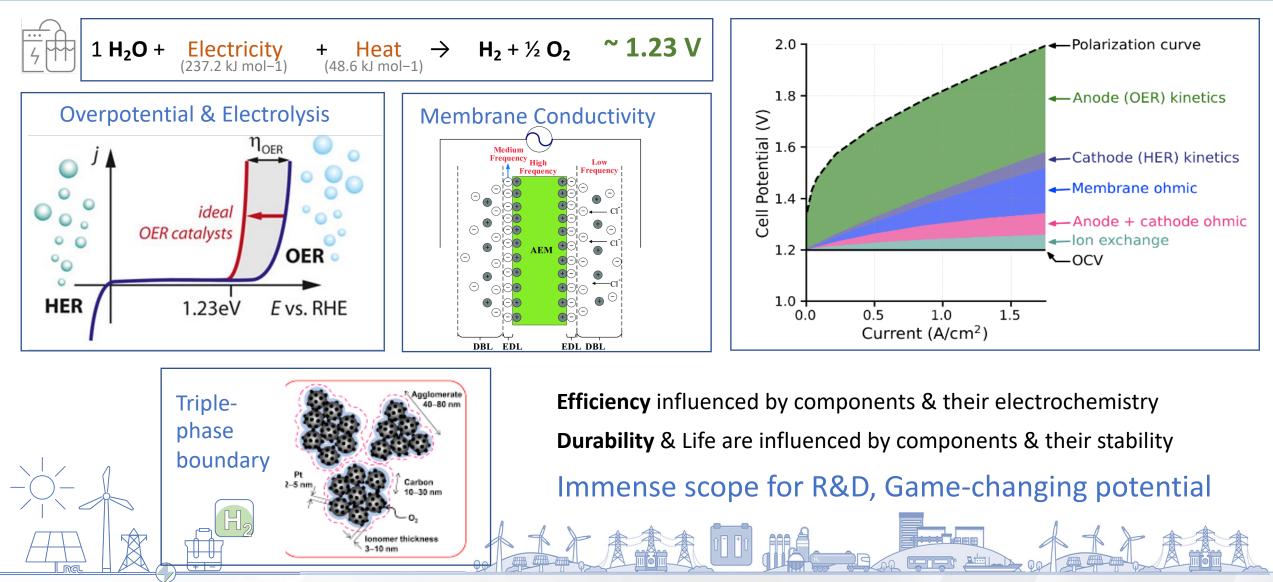



AC-DC converters
Efficient rectifiers
Pumps
Heat exchangers
Gas leak detectors
Dryers
HP components
Accelerated tests
Efficiency influenced by component integration
Durability & Life are influenced by affordable MoC & op. conditions
India is fairly comfortable in BoP, Electronics etc.

## **Cost: Core technology: R&D - cheaper & efficient component**



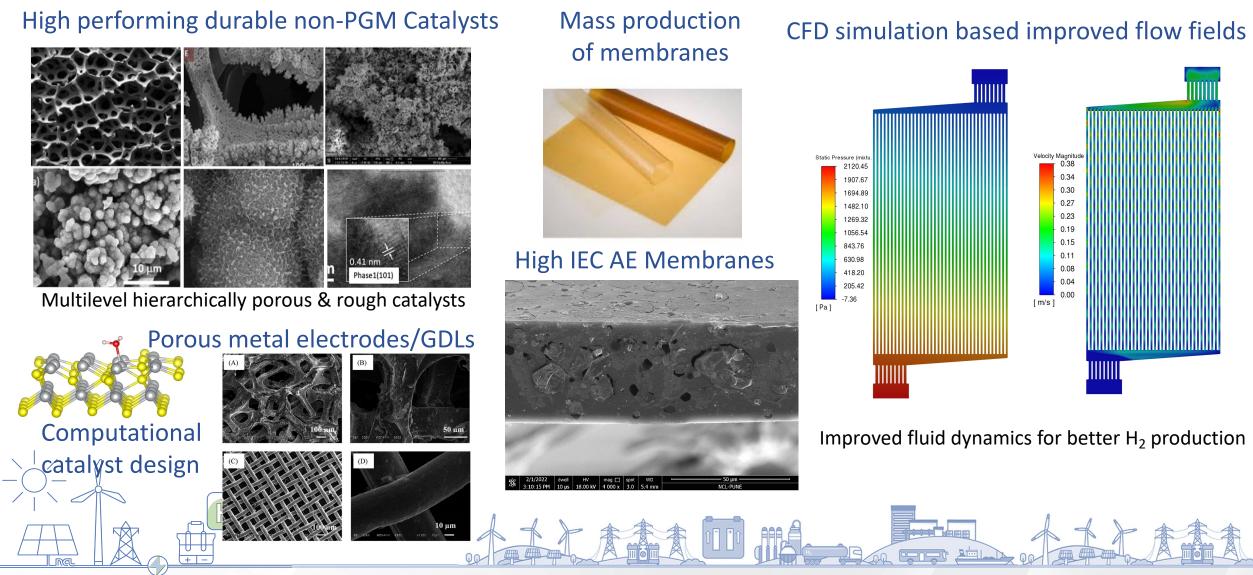





Core Technology

PTL, porous transport layer; MPL, microporous transport layer; GDL, gas diffusion layer; PTS, porous transport system; GDS, gas diffusion system; CCS, catalyst coated substrate; **CCM**, catalyst coated membrane.

Indigenization of core technology is critical for an Atmanirbhar Bharat


## **Cost: Stack Technology - Thermodynamics & Kinetics**

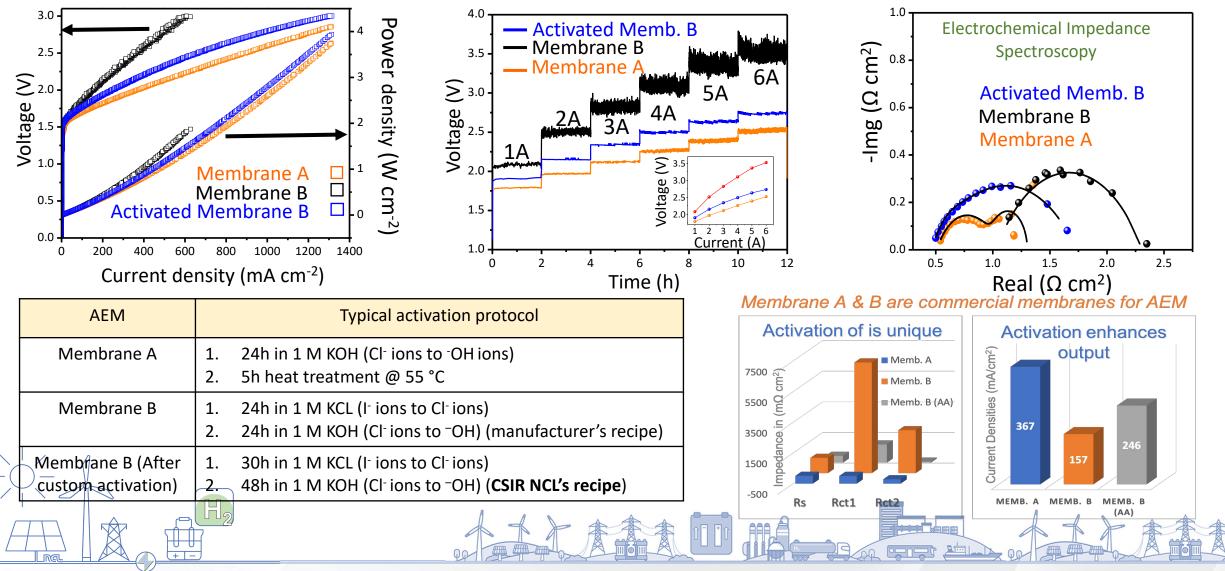




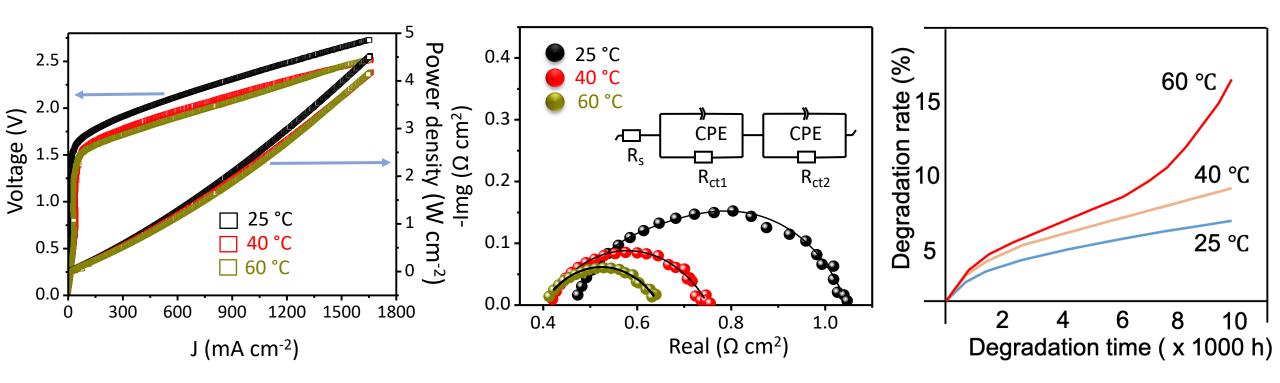
## **Cost: Stack Technology – Immense R&D opportunity**






Kaliaperumal Selvaraj CSIR NCL

#11


### **Membrane: Critical component**



Catalysts: Ru/C v/s Pt/C @ Room temperature

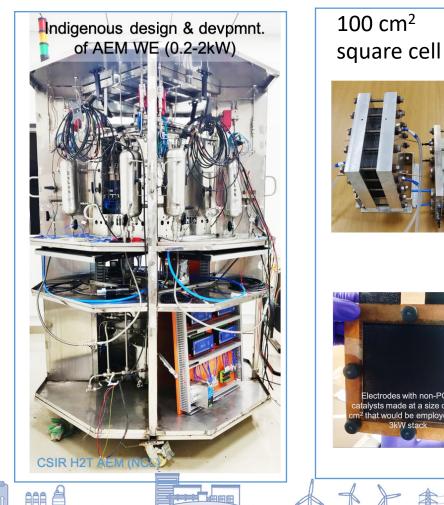


### **Operating conditions: Performance vs Life - Trade-off**



Example case in AEM

- EM o Higher operating temperature enhances the IEC of the membrane and reduces the overpotentials
  - Higher potential operation increases the hydrogen production capacity
  - Higher operating temperature reduces the life of components and the electrolyser


### **Challenges in testing R&D: Hydrogen Generation Tech.**

- A handful of international test station manufacturers
- Surging orders, long lead times, long queues
- India: No comm. electrolyser test station manufacturing
- TRL variations (PEM/AEM/SOE): unpredictable test-bench market
- R&D labs are forced to fabricate own test stations (extra load)
- Import dependency: components (EIS) & accessories
- Poor supply chain: components & consumables
- Expensive power supplies: AC-DC or DC-DC converters
- Affordable & reliable H<sub>2</sub> leak detection devices

Kaliaperumal Selvaraj CSIR NCL

- Lab Safety: Continuous & larger quantities of H<sub>2</sub> & O<sub>2</sub> generation
  - $H_2$  Vent (demands flash arrestors /  $N_2$  for dilution)

### CSIR's first indigenous AEM Water Electrolyser





### #15

### Challenges in testing manufacturing: Hydrogen Generation

- Testing hydrogen production at MW level needs new facilities
- Such facilities/protocols are unprecedented
- $\circ$  Key aspects: Electricity, Water, Gas analysis (H<sub>2</sub> & O<sub>2</sub>)
- Large-scale utilities: Power supply (@MW scale)
- Low voltage (400V)-high current(2.5kA): needs new excl. safety
- Safety: Large quantities of H<sub>2</sub> & O<sub>2</sub> (H<sub>2</sub> sink)

Kaliaperumal Selvaraj CSIR NCL

- $\circ$   $\,$  Large-scale gas flow: Limiting the range of MFM  $\,$
- Testing cost: Affordable Electricity & Remunerated H<sub>2</sub> sink
- $\circ$  H<sub>2</sub> sink1: Cold Vent (demands 24X of N<sub>2</sub> for dilution)
- $\circ$  Venting large H2 is eventually not feasible (GWP of H<sub>2</sub> is 5.8)
- $\circ$   $H_2$  sink2: Flare (to be alive, demands CNG: emissions & soot!)  $\circ$   $H_2$  sink3: Captive consumption FC (high CAPEX, H2 purity!)

H<sub>2</sub> sink4: Chemical industry via pipeline (CAPEX, purity)

- Location of test facility: Non-residential (Explosion Safety)
- TRL-based test variations: 'One-size-does-not fit all'

AWE, PEM, SOEL, PC, PEC, AEM

**Praunhofer IWES** Electrolyser test field at the Hydrogen Lab Leuna. (1) Concrete slab for placing devices under testing (DUT), (2) safety cold vent, (3) connection to Linde H<sub>2</sub> pipeline as H<sub>2</sub> sink, (4) medium-voltage power supply, (5) programmable logic controller and control room interface, (6) individual utility interface (IUI). Insert: Close-up of the IUI. (7) H<sub>2</sub> and O<sub>2</sub> analysis, (8) N<sub>2</sub> supply, (9) compressed air supply, (10) H<sub>2</sub> product output, (11) process water supply, (12) deionized water supply, (13) low-pressure steam supply. © Fraunhofer IWES.





- o Affordable electrolyser technology development is key to realizing Energy Transition
- Apart from affordable renewables, R&D at core technology is critical to reducing LCOH of H<sub>2</sub>
- India should focus on building R&D infrastructure & testing capabilities
- Component development and manufacturing are keys for India to be self-reliant in H<sub>2</sub> generation & export
- AEM seems to be a game changer in electrolyser technology; Focused activity will help to realize it.
- Setting safety & standards will boost the tech. development and market penetration
- o Incentivizing PPP mode tech development will help to fill up the 'Valley of Death' in mid-range TRLs
- $\circ~$  The global electrolyser industry is set to grow exponentially, and India should not miss the bus.



### **INTERNATIONAL CONFERENCE ON GREEN HYDROGEN 2023**

# THANK YOU

For kind attention

co.



MINISTRY OF NEW AND RENEWABLE ENERGY GOVERNMENT OF INDIA

AND NATURAL GAS GOVERNMENT OF INDIA

MINISTRY OF PETROLEUM GOVERNMENT OF INDIA

OFFICE OF THE PRINCIPAL SCIENTIFIC ADVISER TO THE



