

RI&D, Scale and Speed for Green Hydrogen -Strengthening R&D Ecosystem to meet India's Ambitions

> Chinnakonda S. Gopinath CSIR- National Chemical Laboratory, Pune

Targets for Near, Mid and Long Terms

"Green Hydrogen will be India's biggest goal for providing a quantum jump to address climate change"

Aug. 15, 2021

Near Term (2030-2035)

- Aim for 5 MMTPA green H2 (8% RE capacity)
- Phased replacement of grey in refining & fertilizer
- Green H2/ green NH3 hub for export, bunkering

Mid Term (2040)

- Reach 12 MMTPA green H2 (20% of 500 GW RE)
 Shift diesel backup power generation to H2-FC/ ICE
- Shift HCVs to H2-ICE/ FCEV by 2045

Long Term (> 2050)

At least 70 MMTPA commensurate with Indian economy
Shift steel, cement to H2 technologies
Grid balancing/ curtailed power

6/7/2023

India's National Hydrogen Energy Mission (NHEM)

Aspirational Goal Ensuring sustainability in each part of the hydrogen value chain

Hydrogen 212

Hydrogen generation at less than 2 \$/kg,
Storage-Distribution-Fuelling at less than 1 \$/kg
Replacing fossil tech. by H2 with ROI less than 2 years

Countries where green H2 could become cheaper than blue H2

- Lots of scope for RI&D to make H2 affordable, through Tech Devel.
- Pl. remember hardly 5 % of 330
 Billion US\$ announced is available on the ground.

Water Electrolysis

Stack efficiency and capex are critical for viability

Red-Orange-Yellow-Green

Favoured Direction

-		Plant cost (\$/kW) CAPEX																	
5		500				350			200			50							
	0.0	9.37	1.61	0.37	0.12	7.2:	1.21	U.25	U.U.	5.10	U.82	0.14	10.0	2.96	0.43	0.03	0.00	60	8
		7.47	1.26	0.27	0.07	5.76	0.94	0.17	0.0	4.05	0.63	0.08	0.00	2.34	0.32	0.00	0.00	75	
		6.20	1.02	0.20	0.04	4.78	0.76	0.12	0.00	3.35	0.50	0.05	0.00	1.93	0.24	0.00	0.00	90 60 75 90 60	
	1.0	10.15	2.39	1.15	0.91	8.02	2.00	1.04	0.8	5.88	1.61	0.92	0.79	3.75	1.22	0.81	0.73		
		8.09	1.89	0.89	0.70	6.39	1.57	0.80	0.6	4.68	1.26	0.71	0.61	2.97	0.94	0.62	0.56		
		6.72	1.55	0.72	0.56	5.30	1.29	0.65	0.52	3.88	1.03	0.57	0.48	2.45	0.76	0.49	0.44		
ſ	2.0	10.94	3.18	1.94	1.7	8.80	2.75	1.82	1.64	6.67	2.39	1.71	1.58	4.54	2.00	1.60	1.52		
		8.72	2.5:	1.52	1.3	7.02	2.20	1.43	1.28	5.31	1.89	1.34	1.23	3.60	1.57	1.25	1.19	75	
		7.25	2.0	1.25	1.0	5.82	1.81	1.17	1.04	4.4(1.55	1.09	1.00	2.98	1.29	1.02	0.97	90	
		11.72	3.96	2.72	2.48	9.59	3.57	2.61	2.42	7.46	3.18	2.50	2.36	5.32	2.79	2.38	2.30	60 75 90 60	Pla
	3.0	9.35	3.14	2.15	1.96	7.64	2.83	2.06	1.91	5.94	2.52	1.97	1.86	4.23	2.20	1.88	1.81		ntE
-		7.77	2.60	1.77	1.61	6.35	2.33	1.69	1.57	4.92	2.07	1.62	1.53	3.50	1.81	1.54	1.49		Ħ
	4.0	12.51	4.75	3.51	3.27	10.38	4.36	3.40	3.21	8.24	3.97	3.28	3.15	6.11	3.57	3.17	3.09		cier
		9.98	3.77	2.78	2.59	8.27	3.46	2.69	2.54	6.57	3.14	2.60	2.49	4.86	2.83	2.51	2.44	75	ICY
		8.29	3.12	2.29	2.13	6.87	2.86	2.22	2.09	5.45	2.60	2.14	2.05	4.02	2.34	2.07	2.01	90 🕉 60	(%)
	5.0	13.30	5.54	4.30	4.05	11.16	5.14	4.18	3.99	9.03	4.75	4.07	3.93	6.89	4.36	3.95	3.88		
•		10.61	4.40	3.41	3.21	8.90	4.09	3.32	3.17	7.19	3.77	3.23	3.12	5.49	3.46	3.14	3.07	75	
		8.82	3.64	2.82	2.66	7.39	3.38	2.74	2.62	5.97	3.12	2.67	2.58	4.55	2.86	2.59	2.54	90)
	6.0	14.08	6.32	5.08	4.84	11.95	5.93	4.97	4.78	9.81	5.54	4.85	4.72	7.68	5.14	4.74	4.66	60	
		11.24	5.03	4.04	3.84	9.53	4.72	3.95	3.80	7.82	4.40	3.85	3.75	6.11	4.09	3.76	3.70	75	
		9.34	4.17	3.34	3.18	7.92	3.91	3.26	3.14	6.50	3.64	3.19	3.10	5.07	3.38	3.11	3.06	90	
		14.87	7.11	5.87	5.62	12.73	6.71	5.75	5.57	10.60	6.32	5.64	5.51	8.46	5.93	5.53	5.45	60	
	7.0	11.87	5.66	4.67	4.47	10.16	5.34	4.57	4.42	8.45	5.03	4.48	4.38	6.74	4.72	4.39	4.33	75	
		9.87	4.69	3.86	3.70	8.44	4.43	3.79	3.66	7.02	4.17	3.71	3.62	5.60	3.91	3.64	3.58	90	
8		15	35	65	90	15	35	65	90	15	35	65	90	15	35	65	90		
Gopi @ ICGH2023 Plant load Factor (%) 5									5	1									

106702/2023

Opportunities Across H₂ Value Chain

Μ

ΡE

RI&D Challenges

Electrolyzers and Fuel Cells:

- Catalysts and their Scale-up
- Membranes and their scale-up
- Interfacial chemistry/physics for better performance
- Theory and Modeling
- Lots of Scale-up and Engineering challenges

Storage, Distribution and Others:

- Composite cylinders that contains recyclable carbon fibers
- Balance of plant
- Liners of composite cylinders
- All testing facilities related to H2

Highly Challenging, but rewarding (currently blue-sky) Projects

- Artificial photosynthesis for H2 and/or carbon recycling
- **Water Electrolysis without OER at low potential Totally different approach**
- ♣ Sea water splitting with real sea-water and suppress Cl₂ evolution.

National Hydrogen Energy Mission of India

Mission Strategy:

- 1. Creating demand (blending H2 with NG, 10-year ramp up of green H2 usage in fertilizer and refinery)
- 2. Pilots for niche applications (RE integration & decentralization, HCVs, storage, pipelines, biomass, steel/ methanol)
- 3. Infrastructure development for storage & distribution (Best to combine production and utilization locally)
- 4. Hydrogen hubs (connecting production with local utilization with short range distribution)
- **5.** Regulations, codes and standards (harmonize with intl. stds, timebound approvals for pilots, regulatory framework for vehicles/ storage/ refuelling, testing facilities for certification and validation, web database for regulations/ stds)
- 6. Indigenous manufacturing (incentives for Make-in-India, progressive indigenization across value chain)
- R&D (applied research over short-term (0-5 yrs) and mid-term (5-10 yrs) and breakthrough research over long-term (10 yrs), support SMEs/ startups, PPP mechanism through SHIP, support creation of CoEs with industry consortium)
- 8. Policy support (facilitate open access RE, create demand through policy framework e.g. DG replacement)
- 9. HRD (skill development centers, course curricula)

Governance: National hydrogen expert group for tech advice/ gap analysis/ roadmapping/ assessment/ market analysis 6/7/2023 Gopi @ ICGH2023 8

Other R&D Contributions

6/7/2023

Operational Models

Centers for translation and innovation (CTIs)								
 Section 8 company 								
\circ Rapid translation of ideas into prototypes and commercial products through innovation								
De-risking technology commercialization through viability gap funding (TRL 2 to TRL 9)								
 Connect academia, R&D institutions, industry, government agencies together 								
 Connect experts, facilities, funding and innovation tools 								
• Core team of scientists, engineers, business professionals								
 Mission mode projects, Grand Challenge projects, Testing facility 	- RI&D to Technology Scale-up							
Centers of Excellence (CoEs)	with Speed is absolutely							
 Co-located within R&D institutions, academia 	necessary to make H2							
 Development of new cutting edge and global IP creating technology 	n affordablo							
 Building new competencies, advanced scientific facilities 	anoruable							
 Focusing on Grand challenge projects, Blue sky projects 								
 Focusing on TRL 0 to TRL 3 projects 								
 Connecting scientists and engineers across academic/ R&D ins 	stitutions with CTIs							
Contribute to skill development, public awareness, standards	and codes, consulting, strategy and roadmaps							

CSIR Hydrogen Technology (H2T)

Key activities:

- 1. Increase TRL for strategic raw materials, components and full systems → tech transfer and vendor development
- 2. Continuous R&D and innovation → help Indian companies to stay ahead of competition
- Creating state-of-art testing facilities (in collaboration with other agencies where possible) → enable standardization, certification, quick prototyping, validation of POCs and rapid scale-up to achieve higher TRLs
- 4. Skilling human resources (in collaboration with other agencies where possible)
- 5. Participating in policy research/ techno-economics/ market intelligence
- 6. Jointly conceiving, planning and monitoring large pilot projects for implementation in PPP mode

H2T Proposals (Overview)

Hydrogen Generation	Hydrogen Storage/ Distribution	Hydrogen Utilization	Testing & IP	Skilling	
Electrolysis (PEM/AEM/SOE)	Type III/ Type IV	LTPEMFC and HTPEMFC	EOI for testing	One	
Catalysts for electrolysis & scale-up	cylinders			workshop	
Compact reformer&H2 purification	Intermetallics, high entropy alloys and Metal	Catalyst, membranes, GDL, BPP, MEA, Stacks		More in pipeline	
CH4 Pyrolysis (Plasma and Catalytic)	nyariaes		Analytics &		
Bio-H2/Waste-to-H2	LOHC, MXenes	SOFC	informatics from URDIP		
Artificial photosynthesis		HPSR (H2 plasma smelting reduction or green steel)			
Active industry participation is in pla project activitie	ace with majority of the es.	Modelling and simulations of fuel cell			
Missing	Missing	Support role	Missing	Missing	
PTL and membrane for electrolysis	Pipes	Scale up of LTPEMFC and HTPEMFC	More testing centers;	Hands-on; Basic/	
6/7/2023	Refuelling Gopi @ ICG	H2023	Market intelligence	introductory 12	

Dark-fermentation Process - Biohydrogen Production

Pilot Scale -Standalone H₂ production (50, 000 L H₂/day / 4.5 H₂ kg/day)

Biohydrogen Pilot plant 6/7/2023

Various Unit operations in Biohydrogen Pilot plant

Biogenic Municipal Waste
Food Waste
Vegetable Waste
Industrial wastewater
Sludge
Agro-biomass

Gopi @ ICGH2023

14

CSIR's Hydrogen Program: Today's Status

Demonstration of 3 kWe LT-PEMFC System for telecom tower applications

Demonstration of Fuel Cell Electric Vehicle (FCEV) on 07 Oct 2020 and Jan 2022

Demonstration of HTPEMFC based Combined Cooling & Power System

PEM electrolyzer at BARC

SOFC

H2 Plasma Reactor for Steel

Coal gasification pilot plant

Indian R&D institutions and academia are geared up to play an enabling role in building hydrogen economy in India

Indian talent in scientists and technologists must be leveraged for
Strategic planning of important programs in NHEM
Formulation of standards and codes
Creation of centres for translating innovations and testing facilities

Scale-up with speed is very critical to make H2 affordable.

