Studies on Impact of Hydrogen on Materials –

IOC R&D Capabilities

Pipeline and Corrosion Research Department Indian Oil R&D Centre, Faridabad

Damage Mechanisms of Hydrogen in Metals

- Nascent 'H' diffuses into steel due to its atomic size, solubility and diffusivity
- Trapped at dislocations, point defects, grain boundaries, voids, precipitatematrix interfaces
- High Temperature Hydrogen Attack reaction of trapped hydrogen with carbides leading to fissures
- At low and high temperature, entrapped hydrogen recombines at heterogeneities leading to swelling / Blistering
- Dissolved hydrogen migrates to triaxial stress sites causing time dependent static fatigue
- Dissolved hydrogen causes matrix Hydrogen Embrittlement
- Retardation of plastic deformation by locking of dislocation by trapped hydrogen

Damage Mechanisms of H₂ in metals

Low Temperature

- Hydrogen Blistering
- Hydrogen Embrittlement
- Hydrogen Stress Assisted cracking
- Tolerant to lower levels of H₂

High Temperature

- High Temperature hydrogen attack (HTHA)
- Tolerance to higher levels of H₂

Hydrogen Blistering in Line pipe due to wet H₂S Corrosion

Methodology for evaluation of in-service pipelines

ASME BPVC Section VIII, Div. 3, Article KD-10

"Confidential Information of Indian Oil Corporation Limited"

Repurposing

Tensile Deformation & Fracture

Tensile Test X100 steel tested in hydrogen at different gas pressures (Strain rate - 7x10⁻⁵ /s)

- \checkmark Notch sensitivity & Strain rate sensitivity of Tensile properties to Hydrogen
 - ➢ Increasing H₂ pressure significant vs. Increasing strain rate
- $\checkmark\,$ Revised of properties for consideration in Design revision

Fracture Resistance

- Fracture Toughness (K_{IC}) the most critical parameter for evaluation of the pipe grade steels
 Dependant on Defect geometry & Strength (UTS) of the Pipeline grade
- Fracture resistance behavior of welds vs parent metal
 - ✓ Residual stress, Local hard spots (HAZ) & Local microstructural inhomogeneity

Stress Intensity Factor, K

- K defines stress state of crack
- \succ K = $\sigma \sqrt{\Pi}a \times f(geometry)$
- \succ σ = Stress ; a = Crack size

Higher the strength Lower the Fracture Toughness

Fatigue resistance

Fatigue Crack Growth Rate – Critical parameter in pipeline operations

✤Pressure cycling induces fatigue

Partial pressure of hydrogen affects FCGR

A Hydrogen effects not seen under large ΔK

Evolution of flaw size determined by *Fatigue crack growth* (ΔK -da/dN data)

Ref.: San Marchi et al, PVP2021-62045

"Confidential Information of Indian Oil Corporation Limited"

Time, hrs

Uniqueness of Pipeline Transportation systems

- Compositional Tolerances within the specified grade
- Steel making and Pipe manufacturing processes
- Design and construction practices
- Workmanship & Quality control during fabrication
- Defect acceptance limits and the NDT adopted
- Operational aspects : Max.pressure , pressure cycles, temperature, fluid type etc.
- In-service stresses , damages, defects, repair techniques

Case to case assessment required for alteration of service

Simulated Hydrogen charging - Challenges

Offline Charging

- Electrochemical Charging
 - ✓ Large surface conc.; Skin effect; Inhomogeneous
- Autoclave / Reactor based exposure test
 - \checkmark At actual Op. conditions; Saturation with time
- Retention of charged hydrogen over test period of few hours to Months

Autoclave

Online Charging

- Evaluation of property under active charging
- Fatigue Crack Growth Rate Tests (1-2 Months)
- SSRT (Slow strain rate test) 10⁻⁴ to 10⁻⁶ / s capability

SSRT cum Fatigue testing with online H₂ Charging

Past Studies at R&D on Cr-Mo steels of Refinery Reactor

- 2.25Cr1Mo plate charged with Hydrogen in Pilot plant reactor at 475°C & 220 kg/cm²
- Bulk hydrogen of 15ppm post exposure
- Tensile & Fracture toughness evaluation done

R&D Initiatives For Pipeline Grade steels

- Study on weldments of service exposed Pipelines
 - Theoretical determination of H₂ concentration in Pipeline steel using empirical equations
 - Finite Element Modelling for local stress field evaluation at various operating pressure
 - Micro-structural characterization
 - Autoclave Exposure in 18%, 36%, 50% (v/v) H_2 blends in CNG and 100% H_2 @ 35 kg/cm²
 - Slow Strain Rate Tensile testing

Estimation of [H] concentration

Permeability, Diffusivity and Solubility

- Affected by carbon content and microstructure
- Exponentially varies with temperature Arrhenius relation

Solubility as per Sieverts Law

 $[H] = K [pH_2]^{0.5}$

Diffusivity as per Fick's' Law

 $D = D_0 * e^{(-k/T)} k = Ea/R$

D (Diffusivity of H_2) = 1.12e-8 m²/s @ Room Temp.

Maximum solubili	ty of [H] in lattice	API X65 and API X	70 steels for a 6 mm k	by 3 mm sample ex	kposed to 18% v/v H
------------------	----------------------	-------------------	------------------------	-------------------	---------------------

Concentration (ppb)		1-day	7-days	14-days	21-days	30-days
Surface (0 mm)	API X65	31.06	31.06	31.06	31.06	31.06
	API X70	31.06	31.06	31.06	31.06	31.06
Mid (3 mm)	API X65	28.89	30.24	30.48	30.58	30.66
	API X70	29.37	30.42	30.61	30.69	30.75

Pre-stressed Three Point Bend samples

Weld sample as per API 5L Spec.

Three point bent beam fixture

Deflection measurement with LVDT

- Samples extracted from weldments of service exposed API X65 & X70 as per API 5L
- Subsize tensile samples were fabricated as per ASTM E8
- Subjected to stress using a bent beam fixture at MAOP
- Post exposure, tensile property evaluated

- Prestressed Three Point Bend specimens considered
- Deflection generates bending tensile stress equivalent to Hoop stress
- Deflection estimated at MAOP (72% SMYS)

FEM based Applied Stress vs. Deflection plots

Microstructural Characterization

API X65 – BM, HAZ, GW

@ 720 X

Base Metal = Banded Pearlite + Ferrite Microstructure

HAZ and Weld = Elongated Grain + Widmansttaten ferrite

API X70 – BM, HAZ, GW @ 720 X

Tensile Test Data (Normal strain rate)

AIR

600

No significant degradation of YS & UTS in weld samples – At Normal strain rate without Notch

Steel	Test Environment	Yield Strength (MPa)	Ultimate Tensile strength (MPa)	
API X65	Air	503	594	
	@ 35 kg/cm ² 18% HCNG	508	591	
API X70	Air	586	606	
	@ 35 kg/cm ² 18% HCNG	558	612	

No significant degradation of YS & UTS in base metal – At Normal strain rate without Notch

Fractograph of Normal tensile samples

API X65 weld Before Exposure

API X70 weld after Exposure

Predominantly Dimple with few cleavage facets indicating ductile failure

Notched Slow Strain Rate Tensile tests

- Notch induces Stress triaxiality
- Stress induced diffusion of H during charging
- Autoclave charging at 18% HCNG conditions @ 35 kg/cm2
- Diffusion of mobile H₂ to triaxial points
- Properties indicate Notch sensitivity & material behavior with linear

defects

Slow Strain Rate Test equipment

X70 Notched weld specimen tested at 3*10⁻⁶ s⁻¹

UE – Unexposed E – Exposed GW – Girth weld

X70 Charged sample failed at notch region

X70 Notched weld specimen tested at Normal speed

Sectional Microstructure Pre & Post failure – X70

Microstructure of failed region of exposed samples of API X70 girth weld – 720X

SEM Fractograph of X70 steel welds post SSRT

H₂ Charged sample - Notched region showing a mixed mode (Ductile dimple & cleavage) fracture

Uncharged sample - Notched region showing a ductile dimple fracture

Work in Progress

- Slow Strain Rate Testing (Tensile & Fracture Toughness)
 - ✓ Samples with v-shaped notch
 - ✓ Three-point bend tests for Fracture toughness
 - ✓ Effect of blend composition on Fracture toughness
- Fatigue Crack Growth Rate Test
 - ✓ Samples with fatigue pre-crack
 - ✓ Effect of load ratio, load cycle frequency, load cycle duration with hydrogen s composition on fatigue crack growth rate
- Studies to be conducted under 36%, 50% v/v H_2 in CNG and 100% H_2 for
 - ✓ X52, X65, X70 API 5L PSL2 grades and their different types of weldments
- Generation of database of properties for all grades for compatibility for H₂ transportation
 - ✓ Defect criticality , Max. Allowable Operating conditions

Way Forward...

- "Joint Industry Program" on Repurposing of in-service Pipelines for Transportation of Hydrogen blends from all grades
 - ✓ Research labs & Academic Institutes
 - ✓ Pipeline Operators
 - ✓ Manufacturers of steel / pipe / pipe components / others
 - $\checkmark~$ Round robin tests at various laboratories
- Frame guidelines on Fitness For Purpose, Integrity, Risk assessment, Repair procedures, Inspection practices etc.
- Development of suitable NDT techniques to detect the allowable sizes of defects under Hydrogen service

TEAM MEMBERS

Sh. Mukti Ranjan Mahapatra Sh. Santosh Kumar AR Sh. Amir Q M Dr. Kannan Chandrasekaran Dr. Ramakumar SSV

Thank you

