

Bridging the Gap through Robust Safety Standard

Green Hydrogen

Arun Mittal Executive Director- OISD

तेल उद्योग सुरक्षा निदेशालय Oil Industry Safety Directorate (पेट्रोलियम एवं प्राकृतिक गैस मंत्रालय के अंतर्गत) (Under Ministry of Petroleum and Natural Gas)

OISD – Technical Directorate of MoPNG

Why Green Hydrogen?

- Environment-friendly: whereas hydrocarbons have 75-85% Carbon content; hydrogen is carbon neutral
- Energy independence: reduces reliance on imported fossil fuels, contributing to energy security.
- Versatile source of energy: can be used as a fuel or feedstock by several sectors, including Oil and Gas, transportation, chemical, steel, and fertilizer.
- □ Stimulate renewable energy growth: Hydrogen production requires large-scale renewable power generation for its production.
- Can help decarbonize hard-to-abate sectors: Heavy industry and aviation have huge power requirements which can be met by hydrogen
- □ Can be easily integrated into existing infrastructure.

□ Safety issues can make or break the acceptance of Hydrogen

Assumptions:

- We already know how to use hydrogen (apathy established users)
- Hydrogen is like any other flammable gas (misconception- new players)
- Hydrogen is too dangerous (fear)
- Some half-truth
 - Hydrogen is safe as it disperses very quickly
 - Reverse joule Thompson effect heats the leaking gas sufficiently enough to self-ignite (auto ignition)

Property	Effect	Remarks
High dispersion rate	Disperses quickly in open space	 Avoid confined space Confined areas have the risk of explosion.
High buoyancy	Due to low molecular weight (It is 14 times lighter than air)	 Adequate ventilation is a must otherwise, pockets will be formed
Toxicity and corrosive properties	Non- toxic and noncorrosive	 Due to high buoyancy, the risk of asphyxiation is rare
Better leak detection	Makes louder noise in even small leaks	 Detectors shall be placed after dispersion analysis

Property	effect	Remarks
Very low ignition energy	 H2 has very low ignition energy (30 times lesser than methane) 	 Effective installation and maintenance of electrical equipment and wiring as per Hazardous area classification
Wide range of flammability & High flame speed	 Low ignition energy & wide range means a very high probability of fire in case of a leak Results into detonation 	 Ensure robust leak detection Reliability of process and safety controls system to be ensured
Material compatibility of hydrogen	 Embrittlement High-Temperature Hydrogen attack (HTHA) 	 Use of material as per applicable national/ international Standards

Hydrogen incidents...

Source: https://www.koreaherald.com/view.php?ud=20190523000739

Electrolyser

Explosion due to oxygen contamination in the storage vessel. Membrane degradation, lack of inspection

□ Failure of the Hydrogen Valve resulted in a fire

Incorrect MoC, proper fabrication protocol not followed

□ Hydrogen Tanker loading

Unauthorized repair attempt and absence of SOP

□ Hydrogen Bus fueling station


An incompatible pressure relief device installed

Asset Integrity

- Asset Integrity Management (AIM) is crucial in ensuring the safe and reliable operation of assets within the green hydrogen value chain.
- Management commitment, resource allocation, skilled manpower, and safety culture in process safety management are essential
- The AIM program should be implemented throughout various stages of the value chain to maintain the integrity of assets and mitigate risks

Follow the Basics....

Like other flammable gases, Hydrogen safety relies on these key considerations

- Identify Hazards
- Eliminate hazards or define mitigation measures
- Ensure asset integrity accordingly
- Provide ventilation as per standards to prevent accumulation
- Manage process and storage vents
- Detect and isolate leaks
- Train personal
- Public awareness

Gaps in regulation

 Existence of gaps in regulation
 Need for a comprehensive review of regulation and regulatory mechanism

□ Focus on the entire value chain of hydrogen

Background

- □ Oil industry is having rich experience in handling Hydrogen
- With help of Industry experts, regulators and referring to national and International standards, OISD is developing a Standard on Hydrogen Safety

Scope :

- This standard establishes minimum safety requirements for hydrogen, including design, construction, materials, equipment, testing, operation, and maintenance.
- It applies to hydrogen production, storage (gaseous and liquid), monitoring and control devices, road transport, pipeline transportation, and blending with natural gas.
- The standard also covers refueling stations for vehicles using compressed gaseous hydrogen

Our standard covers the following aspects of safety

- Hydrogen properties and general safety considerations specific to H₂
- ✓ Safety in Electrolyser installations
- ✓ Safety distances
- ✓ Risk analysis procedure
- ✓ Hazardous area classification
- ✓ Detection system
- ✓ Fire fighting
- ✓ Safe Hydrogen disposal

OILI	NDUSTRY SA		RATE
हाइड्रो	जन और हाइड्रो	जन मिश्रणों के उत	-पादन,
	भंडारण और	संचरण में सुरक्षा	
		3	
	ओ आई एस	डी - मानक- 241	
TRANSF	FETY IN PRODU	डी - मानक- 241 ICTION, STORAGE A IYDROGEN AND HYD	ND DROGEN
SA TRANSF	ORTATION OF H	TION, STORAGE A	ND DROGEN
SA	ORTATION OF H	ICTION, STORAGE A	ND DROGEN
TRANSP	ORTATION OF H	ICTION, STORAGE A	ND DROGEN
TRANSF	ORTATION OF H	ICTION, STORAGE A	ND DROGEN
	OISD-ST	ANDARD-241	ND DROGEN
TRANSF	OISD-ST	ANDARD-241	ND DROGEN
TRANSP	Inception	ANDARD-241	ND DROGEN

Summing up

- Collaboration and
 Knowledge Sharing among various stakeholders
- Review of the regulatory framework
- Robust risk assessment
- □ Skilling of manpower
- Public Awareness

THANK YOU

