

Developments in thermochemical Hydrogen Procuetion processes at BARC

Dr A Shriniwas Rao Chemical Technology Division Bhabha Atomic Research Centre Mumbai, India

Outline

- Introduction
- Iodine Sulfur Process
 - Glass closed loop
 - Metallic closed loop
- Hybrid Sulfur process
 - Glass closed loop
 - Metallic closed loop
- Variants of S based processes
- Copper Chlorine Process

Introduction

- Energy demand
- Fossil fuels
- Green house gas emissions
- One potential opportunity
 - To replace the use of fossil fuels by hydrogen (by clean energy sources such as nuclear, solar, wind, hydro or high grade industrial heat)
- Hydrogen is
 - Clean
 - Abundant
 - Convenient to use
 - Independence from foreign control

Iodine Sulfur process

Advantages of Iodine-sulfur (I-S) Process

- High predicted thermal efficiency of around 50%
- Closed loop process All chemicals are recycled within system
- All fluid process
- It's capability to be coupled to
 - ✓ A high temperature nuclear reactor (HTR)
 - ✓ Solar concentrated heat
 - √ High grade industrial heat
- Promising method for
 - efficient
 - reen house gas emission free
 - ▶ large scale hydrogen production

lodine-Sulfur Process

1.Bunsen Section

- A. Bunsen Reaction
- B. Liquid-Liquid Separation

Heat

 H_2O

C. Acid Purification

2. HI section

- A. HIx distillation
- B. HI decomposition

3. Sulfuric Acid Section

- A. Sulfuric acid Concentration
- B. Sulfuric acid Decomposition

I-S PROCESS: Options in each section

Objective of I-S process in glass setup

- To study the feasibility of operation
- To study stability/controllability of operation
- To use the catalysts developed for HI and SO₃ decomposition in closed loop conditions
- Testing of equipments, pumps and monitors

Closed Loop Glass setup

Liquid-liquid separator

Sulfuric acid purifier

HIx purifier

Interface

Bhabha Atomic Research Centre, Mumbai, India

HI Distillation column and HI decomposer

HI recovery column

Sulfuric acid concentrator and decomposer

Sulfuric acid decomposer operating at 900 ° C.

Sulfuric acid distillation

Distillation column

Bhabha Atomic Research Centre, Mumbai, India

I-S Process Demonstration in Glass setup

- Studied the process in glass/quartz equipments
- Input Only water and heat
- Output H₂ and O₂
- Recycled SO₂, Iodine, H₂O
- All three sections were operated simultaneously
- Operated continuously to produce Hydrogen at 30 Nlph
- · The feasibility of closed loop operation established
- India is the 5th Country to achieve this

Work carried out for Industrial I-S process

Identification of compatible MoC

 Corrosion test study has been done with special metals, ceramics, polymers such as <u>Tantalum</u>, <u>Hastelloy</u>, <u>Incoloy</u>, <u>SiC</u>, <u>PTFE</u> and noble metals

Typical coupons exposed in the test setups

Equipment	Operating Temp (°C)
H ₂ SO ₄ Decomposer	~500°C
SO ₃ Decomposer	~900°C
HI Decomposer	~500°C
H_2SO_4	~337°C
Boiling/Vaporisation	
HI Boiling/Vaporisation	~127°C
HIxD Reboiler	~180°C
HIx distillation column	~127-180°C
Sulfuric acid distillation	~120-270°C
column	

High pressure Bunsen Reaction Setup

Bunsen Reactor

- The Bunsen reactor is a tubular reactor
- The reactor is made of tantalum tube with SS 316 jacket.

Static Mixer elements

Tantalum Tube

Bhabha Atomic Research Centre, Mumbai, India

Feed tank and operating console

Iodine Feed tank

Operating parameter range

Parameter	Ranges
Operating temperature	60 °C to 80 °C
Operating pressures	2 bar (g) - 6 bar (g)
Flow rates of feed HIx	1.2 l/h to 3 l/h
I ₂ / H ₂ O mole ratios	0.22-0.36
Feed flow rate of SO ₂	0.02 g/s - 0.24 g/s

H₂SO₄-HI_X Interphase SA Phase H₂SO₄+H₂O

HIx phase HI+H₂O+I₂

Bunsen reaction product phases for experiment at 6 bar (g) and 70 °C

High pressure Bunsen Section-Remarks

- Feasible to carryout in continuous mode
- The desirable operating range identified
- Know how of design & operation procedures established
- Knowledge & experience utilized for 'Metallic Closed loop'

Components for Sulfuric acid decomposition

SiC- Bayonet tube reactor

SiC reactor developed, tested at 900 °C for H₂SO₄ vaporisation and decomposition

Catalyst for Sulfuric Acid Decomposition

- > Cr-doped Fe₂O₃ developed non-noble catalyst
- > Cr-doping improved activity & stability
- > Mechanism understood Formation & decomposition of transient metal sulfate

Development of *Ceramic Foam* type Catalyst for Sulphuric acid decomposition

- Ceramic shaping techniques used to address issues of pore stability & degradation with time
- Template Foam impregnated with ceramic slurry later sintered
- Catalyst exhibited high performance
 - >80% up to 100 h in laboratory conditions
 - Larger batch exhibited ~72% yield in reactor
 - Stability with time

Template Foam

Iron Oxide foam

SEM image showing pores & strut in iron oxide foam catalyst

HI decomposition

- Membrane tube developed to separate hydrogen from lodine, HI and H₂O at high temperature
- Single tube membrane reactor setup is installed and tested
- Multi tube membrane reactor tested
- Achieved more than 80% one pass conversion of HI against equilibrium conversion of ~ 22 %.

HI decomposition reactor

Membrane Reactor

Bhabha Atomic Research Centre, Mumbai, India

Development of *Ceramic Foam* type Catalyst for HI decomposition

- Pt-loaded gamma-alumina catalyst developed
- Ceramic foam type catalyst prepared by
 - impregnating template foam with alpha-alumina slurry
 - followed by sintering & coating with gamma alumina slurry
 - support ceramic foam coated with platinum
- The catalyst showed uniformity in structure and good performance (~20% equilibrium yield)

Bhabha Atomic Research Centre, Mumbai,

India

Alumina foam

After introducing platinum

SEM showing pores

EDS showing uniformity of Pt

Demonstration of I-S Process in MCL

Objectives of the project:

- ✓ Demonstration of I-S process in metallic closed loop (MCL)
- Nominal Capacity: ~ 150 Nlph of hydrogen
- Heating: Electrical energy

Expected Deliverables / Outcome of MCL:

- 1. Operating experience of the closed loop facility with recycling of chemicals
- 2. Standardization of measurement & control techniques
- 3. Study of engineering scale materials under closed loop condition

I-S PROCESS BLOCK DIAGRAM

Bhabha Atomic Research Centre, Mumbai, India

Main SCADA Screen of I-S Process

Mimic Screes in SCADA system

Bunsen Section of I-S Process facility

5July2023

nescarcii centre, ividinibal,

India

First floor of I-S Process facility

Second floor of I-S Process facility

Achievements of I-S Process MCL

- Counter-Current Bunsen reaction cum phase separation achieved for the first time.
- HIx distillation successfully carried out for the first time.
- Complete purification of SA phase achieved.
- Commissioned Bunsen reactor, HI decomposer, SA decomposer, Concentrators and purifiers.
- Studied individual equipment initially, then individual sections (Bunsen section, HI section, SA section)
- Combined all the three sections to close the loop
- Hydrogen is produced at 150 Nlph
- 'First of its kind' with industrial materials & all plant features

Hybrid Sulfur process

Hybrid-Sulphur (HyS) water splitting process

2 steps/reactions

- 1. H₂SO₄ & H₂ generation step (Electro-chemical step, ~80°C)
- H₂SO₄ decomposition step (Endothermic-catalytic reaction, ~850 °C
- Hybrid process: Require both heat & electricity
- Thermal efficiency ~45%

HyS process schematic

Overall reaction: $H_2 \bigcirc \longrightarrow H_2 + \frac{1}{2} \bigcirc \bigcirc_2$

SO₂ depolarised electrolyser (SDE)

- SO₂+2H₂O → H₂SO₄+H₂
 - reaction in SDE
- Single cell SDE (16cm×16cm) is fabricated and tested
- Membrane electrode assembly (MEA) is prepared and tested
- Stacked SDE is fabricated & assembled

Stacked SDE sized & fabricated

Single cell SDE

MEA

HyS demonstration

 Objective: To establish the feasibility of process for continuous operation in lab scale (glass/quartz set up)

- Closed loop operation has been carried out successfully
 - H2 production at a rate of ~2 Nlph
 - Input: H₂O & electricity, Output: H₂ & O₂, intermediate chemicalsrecycled

HyS Experimental Facility - MCL

Objective:

- Demonstration of continuous operation using industrial MOC
- ✓ Electrically heated facility
- ✓ High pressure operation

H2 production at a rate of 10 Nlph is achieved

HSEF: tanks and piping

'SiC' reactor

2 cell stacked electrolyser (SDE)

H₂ & H₂SO₄ from variants of Sulphur based process

Variants of IS & HyS processes

 I-S and HyS process can be altered to utilize the H₂S, SO₂ produced in the Refineries, Zn & Cu industries to produce H₂

Bhabha Atomic Research Centre, Murribai.

India

Schemes for H₂ production from H₂S and SO₂

Advantages of modified IS & HyS processes

- More efficient utilization of exothermic heat of Sulphur/ZnS/CuS reactions
 - to carry out decomposition of HI (450°C)
 - in reboiler of HI distillation column (250°C)
 - in Sulphuric acid and HI purifier (150°C)
- Better utilization of CPP power to drive electrochemical step of HyS process & produce H₂
- Avoiding high temperature (850°C), Sulphuric acid decomposition step

Block Diagram for closed loop H₂S to H₂ process

Feasibility Studies

- ❖ Water as solvent
 - ✓ Carried out reaction experiments of H₂S and I₂
 - ✓ Products obtained are HI and S
 - ✓ Reaction is feasible
 - ✓ Separation of solid S is done
 - Hix section
 - ✓ Distillation of HI, I₂ and water
 - ✓ HI decomposition
 - ✓ Hydrogen production

BARC's technological know-how of HIx section viz HIx distillation, HI decomposition, I₂ recycle and related systems for Hydrogen production are readily available

Feasibility Studies

- DMF (Dimethyl formamide) / DMA (Dimethylacetamide) as solvent
 - ✓ Carried out reaction experiments of H₂S and I₂
 - ✓ Products obtained are HI and S
 - ✓ Reaction is feasible

More studies are required wrt reaction and then followed by distillation

After S separation, BARC's technological knowhow of HIx section is readily available, for Hydrogen production

Copper-Chlorine process

Four step Copper-Chlorine process

- Hybrid cycle
- Typical efficiency ~ 45 %
- Maximum temperature ~ 500°C

Advantages

- Lower temperature
- Integration with
 - Molten Salt Breeder Reactor
 - High Temperature Reactor
 - Solar heat source

Cu-Cl cycle Facility

Achievements Cu-Cl process

TRL-5

- ✓ Corrosion studies performed MoC selected
- ✓ Bench scale integrated process demonstrated
- ✓ Inhouse MEA developed for CuCl-HCl Electrolyzer
- ✓ Energy efficient auxiliary sub-systems developed
- ✓ Hydrogen production of 5 Nlph achieved
- ☐ Design of 150 NL/h hydrogen plant in advanced stage

Immediate future ...

Today - Electrolyser

Tomorrow's technology for large scale Hydrogen plants

- IS and HyS process is developed with indigenous components – participation of PSUs, Industry for higher scale plants
- Variants of IS and HyS to recover hydrogen from H₂S and use high grade industry heat
- Cu-Cl process has advantage of temperature

